Copied to
clipboard

G = C425D14order 448 = 26·7

5th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C425D14, D28.13D4, Dic14.13D4, (C2×Q8)⋊2D14, C4.51(D4×D7), C4.4D44D7, C28.28(C2×D4), (C4×C28)⋊13C22, (C2×D4).51D14, C28.D45C2, C73(D4.9D4), Dic14⋊C411C2, (Q8×C14)⋊2C22, C14.51C22≀C2, D46D14.4C2, C28.C232C2, (C22×C14).22D4, C4.Dic76C22, (C2×C28).379C23, C4○D28.19C22, (D4×C14).67C22, C23.10(C7⋊D4), C2.19(C23⋊D14), (C7×C4.4D4)⋊4C2, (C2×C14).510(C2×D4), C22.31(C2×C7⋊D4), (C2×C4).116(C22×D7), SmallGroup(448,595)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C425D14
C1C7C14C28C2×C28C4○D28D46D14 — C425D14
C7C14C2×C28 — C425D14
C1C2C2×C4C4.4D4

Generators and relations for C425D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=a-1b2, dad=a-1b, cbc-1=b-1, bd=db, dcd=c-1 >

Subgroups: 876 in 152 conjugacy classes, 39 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C22⋊C4, M4(2), SD16, Q16, C2×D4, C2×D4, C2×Q8, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C4.D4, C4≀C2, C4.4D4, C8.C22, 2+ 1+4, C7⋊C8, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×Q8, C22×D7, C22×C14, D4.9D4, C4.Dic7, Q8⋊D7, C7⋊Q16, C4×C28, C7×C22⋊C4, C4○D28, D4×D7, D42D7, C2×C7⋊D4, D4×C14, Q8×C14, Dic14⋊C4, C28.D4, C28.C23, C7×C4.4D4, D46D14, C425D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, C7⋊D4, C22×D7, D4.9D4, D4×D7, C2×C7⋊D4, C23⋊D14, C425D14

Smallest permutation representation of C425D14
On 112 points
Generators in S112
(2 50)(4 52)(6 54)(8 56)(10 44)(12 46)(14 48)(15 37)(17 39)(19 41)(21 29)(23 31)(25 33)(27 35)(57 81 89 108)(58 82 90 109)(59 83 91 110)(60 84 92 111)(61 71 93 112)(62 72 94 99)(63 73 95 100)(64 74 96 101)(65 75 97 102)(66 76 98 103)(67 77 85 104)(68 78 86 105)(69 79 87 106)(70 80 88 107)
(1 34 49 26)(2 27 50 35)(3 36 51 28)(4 15 52 37)(5 38 53 16)(6 17 54 39)(7 40 55 18)(8 19 56 41)(9 42 43 20)(10 21 44 29)(11 30 45 22)(12 23 46 31)(13 32 47 24)(14 25 48 33)(57 81 89 108)(58 109 90 82)(59 83 91 110)(60 111 92 84)(61 71 93 112)(62 99 94 72)(63 73 95 100)(64 101 96 74)(65 75 97 102)(66 103 98 76)(67 77 85 104)(68 105 86 78)(69 79 87 106)(70 107 88 80)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 89)(2 88)(3 87)(4 86)(5 85)(6 98)(7 97)(8 96)(9 95)(10 94)(11 93)(12 92)(13 91)(14 90)(15 78)(16 77)(17 76)(18 75)(19 74)(20 73)(21 72)(22 71)(23 84)(24 83)(25 82)(26 81)(27 80)(28 79)(29 99)(30 112)(31 111)(32 110)(33 109)(34 108)(35 107)(36 106)(37 105)(38 104)(39 103)(40 102)(41 101)(42 100)(43 63)(44 62)(45 61)(46 60)(47 59)(48 58)(49 57)(50 70)(51 69)(52 68)(53 67)(54 66)(55 65)(56 64)

G:=sub<Sym(112)| (2,50)(4,52)(6,54)(8,56)(10,44)(12,46)(14,48)(15,37)(17,39)(19,41)(21,29)(23,31)(25,33)(27,35)(57,81,89,108)(58,82,90,109)(59,83,91,110)(60,84,92,111)(61,71,93,112)(62,72,94,99)(63,73,95,100)(64,74,96,101)(65,75,97,102)(66,76,98,103)(67,77,85,104)(68,78,86,105)(69,79,87,106)(70,80,88,107), (1,34,49,26)(2,27,50,35)(3,36,51,28)(4,15,52,37)(5,38,53,16)(6,17,54,39)(7,40,55,18)(8,19,56,41)(9,42,43,20)(10,21,44,29)(11,30,45,22)(12,23,46,31)(13,32,47,24)(14,25,48,33)(57,81,89,108)(58,109,90,82)(59,83,91,110)(60,111,92,84)(61,71,93,112)(62,99,94,72)(63,73,95,100)(64,101,96,74)(65,75,97,102)(66,103,98,76)(67,77,85,104)(68,105,86,78)(69,79,87,106)(70,107,88,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,89)(2,88)(3,87)(4,86)(5,85)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,92)(13,91)(14,90)(15,78)(16,77)(17,76)(18,75)(19,74)(20,73)(21,72)(22,71)(23,84)(24,83)(25,82)(26,81)(27,80)(28,79)(29,99)(30,112)(31,111)(32,110)(33,109)(34,108)(35,107)(36,106)(37,105)(38,104)(39,103)(40,102)(41,101)(42,100)(43,63)(44,62)(45,61)(46,60)(47,59)(48,58)(49,57)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)>;

G:=Group( (2,50)(4,52)(6,54)(8,56)(10,44)(12,46)(14,48)(15,37)(17,39)(19,41)(21,29)(23,31)(25,33)(27,35)(57,81,89,108)(58,82,90,109)(59,83,91,110)(60,84,92,111)(61,71,93,112)(62,72,94,99)(63,73,95,100)(64,74,96,101)(65,75,97,102)(66,76,98,103)(67,77,85,104)(68,78,86,105)(69,79,87,106)(70,80,88,107), (1,34,49,26)(2,27,50,35)(3,36,51,28)(4,15,52,37)(5,38,53,16)(6,17,54,39)(7,40,55,18)(8,19,56,41)(9,42,43,20)(10,21,44,29)(11,30,45,22)(12,23,46,31)(13,32,47,24)(14,25,48,33)(57,81,89,108)(58,109,90,82)(59,83,91,110)(60,111,92,84)(61,71,93,112)(62,99,94,72)(63,73,95,100)(64,101,96,74)(65,75,97,102)(66,103,98,76)(67,77,85,104)(68,105,86,78)(69,79,87,106)(70,107,88,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,89)(2,88)(3,87)(4,86)(5,85)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,92)(13,91)(14,90)(15,78)(16,77)(17,76)(18,75)(19,74)(20,73)(21,72)(22,71)(23,84)(24,83)(25,82)(26,81)(27,80)(28,79)(29,99)(30,112)(31,111)(32,110)(33,109)(34,108)(35,107)(36,106)(37,105)(38,104)(39,103)(40,102)(41,101)(42,100)(43,63)(44,62)(45,61)(46,60)(47,59)(48,58)(49,57)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64) );

G=PermutationGroup([[(2,50),(4,52),(6,54),(8,56),(10,44),(12,46),(14,48),(15,37),(17,39),(19,41),(21,29),(23,31),(25,33),(27,35),(57,81,89,108),(58,82,90,109),(59,83,91,110),(60,84,92,111),(61,71,93,112),(62,72,94,99),(63,73,95,100),(64,74,96,101),(65,75,97,102),(66,76,98,103),(67,77,85,104),(68,78,86,105),(69,79,87,106),(70,80,88,107)], [(1,34,49,26),(2,27,50,35),(3,36,51,28),(4,15,52,37),(5,38,53,16),(6,17,54,39),(7,40,55,18),(8,19,56,41),(9,42,43,20),(10,21,44,29),(11,30,45,22),(12,23,46,31),(13,32,47,24),(14,25,48,33),(57,81,89,108),(58,109,90,82),(59,83,91,110),(60,111,92,84),(61,71,93,112),(62,99,94,72),(63,73,95,100),(64,101,96,74),(65,75,97,102),(66,103,98,76),(67,77,85,104),(68,105,86,78),(69,79,87,106),(70,107,88,80)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,89),(2,88),(3,87),(4,86),(5,85),(6,98),(7,97),(8,96),(9,95),(10,94),(11,93),(12,92),(13,91),(14,90),(15,78),(16,77),(17,76),(18,75),(19,74),(20,73),(21,72),(22,71),(23,84),(24,83),(25,82),(26,81),(27,80),(28,79),(29,99),(30,112),(31,111),(32,110),(33,109),(34,108),(35,107),(36,106),(37,105),(38,104),(39,103),(40,102),(41,101),(42,100),(43,63),(44,62),(45,61),(46,60),(47,59),(48,58),(49,57),(50,70),(51,69),(52,68),(53,67),(54,66),(55,65),(56,64)]])

58 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G7A7B7C8A8B14A···14I14J···14O28A···28R28S···28X
order122222244444447778814···1414···1428···2828···28
size11244282822448282822256562···28···84···48···8

58 irreducible representations

dim11111122222222444
type++++++++++++++
imageC1C2C2C2C2C2D4D4D4D7D14D14D14C7⋊D4D4.9D4D4×D7C425D14
kernelC425D14Dic14⋊C4C28.D4C28.C23C7×C4.4D4D46D14Dic14D28C22×C14C4.4D4C42C2×D4C2×Q8C23C7C4C1
# reps1212112223333122612

Matrix representation of C425D14 in GL4(𝔽113) generated by

1000
111200
00980
00098
,
98000
981500
00150
001598
,
491500
06400
003053
00083
,
003053
00083
491500
06400
G:=sub<GL(4,GF(113))| [1,1,0,0,0,112,0,0,0,0,98,0,0,0,0,98],[98,98,0,0,0,15,0,0,0,0,15,15,0,0,0,98],[49,0,0,0,15,64,0,0,0,0,30,0,0,0,53,83],[0,0,49,0,0,0,15,64,30,0,0,0,53,83,0,0] >;

C425D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_5D_{14}
% in TeX

G:=Group("C4^2:5D14");
// GroupNames label

G:=SmallGroup(448,595);
// by ID

G=gap.SmallGroup(448,595);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,254,219,184,1123,570,297,136,1684,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a^-1*b,c*b*c^-1=b^-1,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽